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Abstract. We consider the azimuthal asymmetries in semi-inclusive deep inelastic leptoproduction arising
due to both perturbative and nonperturbative effects at HERMES energies and show that the k2

T /Q2 order
corrections to 〈cos φ〉 and 〈cos 2φ〉 are significant. We also reconsider the results of perturbative effects for
〈cos φ〉 at large momentum transfers [1] using the more recent sets of scale-dependent distribution and
fragmentation functions, which bring up to 18% difference in 〈cos φ〉. In the same approach we calculate
the 〈cos 2φ〉 as well.

The semi-inclusive deep inelastic process l(k1) + p(P1) →
l
′
(k2)+h(P2)+X, where l and l

′
are charged leptons and h

is a observed hadron, has been recognized [2] as an impor-
tant testing ground for QCD. In particular, measurement
of the azimuthal angle φ of the detected hadron around the
virtual photon direction (Fig. 1) provides information on
the production mechanism. Different mechanisms to gen-
erate azimuthal asymmetries - 〈cos φ〉 and 〈cos 2φ〉 have
been discussed in the literature. Georgi and Politzer [2]
found a negative contribution to 〈cos φ〉 in the first-order
in αS perturbative theory and proposed the measurement
of this quantity as a clean test of QCD. However, partons
have nonzero transverse momenta (kT ) as a consequence of
being confined by the strong interactions inside hadrons.
As Cahn [3] showed, there is a contribution to 〈cos φ〉 from
the lowest-order processes due to this intrinsic transverse
momentum. Therefore the perturbative QCD alone does
not describe the observed azimuthal angular dependence.
In connection with this Chay, Ellis and Stirling [1] com-
bined these perturbative and nonperturbative mechanisms
and analyzes the quantity 〈cos φ〉 as a function of the de-
tected hadron’s transverse momentum cutoff PC .

In this paper we reconsider the results obtained in [1]
at HERMES energies and show that the k2

T /Q2 order cor-
rections to 〈cos φ〉 and 〈cos 2φ〉 are significant, whereas at
E665 energies in Fermilab [4] these contributions are less
then 10% [1]. We also recalculate the behavior of 〈cos φ〉 in
the kinematic regime at HERA where perturbative QCD
effects should dominate, by using the new sets of scale-
dependent distribution and fragmentation functions which
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Fig. 1. The definition of the azimuthal angle φ

bring up to 18% difference to quantity 〈cos φ〉 obtained in
[1]. In the same approach the quantity 〈cos 2φ〉 is calcu-
lated as well.

The quantities 〈cos φ〉 and 〈cos 2φ〉 are defined as

〈cos φ〉 =
∫

dσ(0) cos φ +
∫

dσ(1) cos φ∫
dσ(0) +

∫
dσ(1) , (1)

〈cos 2φ〉 =
∫

dσ(0) cos 2φ +
∫

dσ(1) cos 2φ∫
dσ(0) +

∫
dσ(1) , (2)
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Fig. 2. Diagrams contributed to quantity
〈cos φ〉 and 〈cos 2φ〉 in the zeroth-order in αS

a, and the first-order in αS : b–d. The dashed
line is a gluon

where dσ(0) (dσ(1)) is the lowest-order (first-order in αS)
hadronic scattering cross section expressed as

dσ ∼ Fi(ξ, Q2) ⊗ dσij ⊗ Dj(ξ
′
, Q2),

where Fi(ξ, Q2) is the probability distribution describing
an i-type parton with a fraction ξ of the target momen-
tum, pµ

1 = ξPµ
1 , dσij describes the partonic semi-inclusive

process (Fig. 2) and Dj(ξ
′
, Q2) is the probability distribu-

tion for a j-type parton to fragment producing a hadron
with a fraction ξ

′
of the partons momentum, Pµ

2 = ξ
′
pµ
2 .

In (1, 2) the integrations are over P2T , φ, xH , y and zH .
These usual set of kinematic variables are defined as:

xH =
Q2

2(P1q)
, y =

(P1q)
(P1k1)

, zH =
(P1P2)
(P1q)

,

where q-momentum of the virtual photon (Q2 = −q2),
and the parton variables

x =
xH

ξ
=

Q2

2(p1q)
, z =

zH

ξ′ =
(p1p2)
(p1q)

.

The nonperturbative effects are parameterized by Gaus-
sian distributions for the intrinsic transverse momenta of
both the target (proton) and the observed hadron (pion):

Fi(ξ, Q2) → d2kT F̃i(ξ,kT , Q2)
= d2kT Fi(ξ, Q2)f(kT ),

Dj(ξ
′
, Q2) → d2ρ′D̃j(ξ

′
,ρ′, Q2)

= d2ρ′Dj(ξ
′
, Q2)d(ρ′), (3)

where

f(kT ) =
1

a2π
e−k2

T /a2
, d(ρ′) =

1
b2π

e−ρ′2/b2 ,

and ρ′ is defined to be perpendicular to the direction of
motion of the outgoing parton. Then in the center-of-mass

frame of the virtual photon and the proton (in the limit
M2/P 2

1 � 1, P 2
1 = Q2/4xH(1 − xH)) the hadron’s trans-

verse momentum, perpendicular to q is given by (for more
details see [1])

P2T = ξ
′
kT + ρ′ − (P1ρ

′)
P 2

1
P1, (4)

and its magnitude as

P 2
2T = (ξ

′
kT + ρ′)

2 − 4xH

1 − xH

(kT ρ′)2

Q2 . (5)

If we allow the initial parton to have intrinsic trans-
verse momentum p1 = ξP1 +kT , the parton cross section
at lowest order (Fig. 2a) is modified [3] to

dσij

dxdydzdp2
2T dφ

=
2πα2

yQ2 Q2
i δijδ(1 − x)δ(1 − z)

×δ2(p2T − kT )
{

1 + (1 − y)2 +
4p2

2T

Q2 (1 − y) − 4p2T

Q

× cos φ(2 − y)(1 − y)1/2 +
8p2

2T

Q2 (1 − y) cos 2φ

}
, (6)

where Qi is a charge of i-type parton.
Using this parton cross section along with the distri-

bution and fragmentation functions of (3) and observed
hadron’s transverse momentum defined in (4), one may
obtain an explicit expression for the hadronic cross sec-
tion at lowest-order in αS∫

dσ(0) cos φdφ

= −8π2α2

Q2

∫
dydxHdzHdP 2

2T d2kT d2ρ′

× (2 − y)(1 − y)1/2

y

∑
j

Q2
jFj(xH , Q2)Dj(zH , Q2)
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×kT

Q
f(kT )d(ρ

′
)δ2

(
PT − ξ

′
kT − ρ′ +

(P1ρ
′)

P 2
1

P1

)
,(7)

∫
dσ(0) cos 2φdφ

=
8π2α2

Q2

∫
dydxHdzHdP 2

2T d2kT d2ρ′ k
2
T

Q2 (1 − y)

×
∑

j

Q2
jFj(xH , Q2)Dj(zH , Q2)f(kT )d(ρ′)

×δ2
(
PT − ξ

′
kT − ρ′ +

(P1ρ
′)

P 2
1

P1

)
, (8)

∫
dσ(0)dφ =

4π2α2

Q2

∫
dydxHdzHdP 2

2T d2kT d2ρ′

×
{

1 + (1 − y)2 +
4k2

T

Q2 (1 − y)
}

×
∑

j

Q2
jFj(xH , Q2)Dj(zH , Q2)f(kT )d(ρ′)

×δ2
(
PT − ξ

′
kT − ρ′ +

(P1ρ
′)

P 2
1

P1

)
, (9)

where the lower limit of the integrating over P2T is PC

(observed hadron’s transverse momentum cutoff).
At large momentum transfers, the intrinsic transverse

momenta of the partons of a few hundred MeV cannot
produce hadrons with larger transverse momenta and the
nonperturbative effects from σ(0) are suppressed. There-
fore, 〈cos φ〉 and 〈cos 2φ〉 are, to a good approximations,

〈cos φ〉 ≈
∫

dσ(1) cos φ∫
dσ(1) . (10)

〈cos 2φ〉 ≈
∫

dσ(1) cos 2φ∫
dσ(1) . (11)

The numerators and denominator of these equations can
be written in following form
∫

dσ(1)cos φdφ =
8αSα2

3Q2

(2 − y)(1 − y)1/2

y

∫ 1

xH

dx

x

×
∫ 1

zH

dz

z

∑
j

Q2
j

{
Fj(ξ, Q2)ADj(ξ

′
, Q2) (12)

+Fj(ξ, Q2)BDG(ξ
′
, Q2) + FG(ξ, Q2)CDj(ξ

′
, Q2)

}
,

∫
dσ(1) cos 2φdφ =

8αSα2

3Q2

1 − y

y

∫ 1

xH

dx

x

∫ 1

zH

dz

z

×
∑

j

Q2
j

{
Fj(ξ, Q2)A

′
Dj(ξ

′
, Q2) (13)

+Fj(ξ, Q2)B
′
DG(ξ

′
, Q2) + FG(ξ, Q2)C

′
Dj(ξ

′
, Q2)

}
,

∫
dσ(1)dφ =

4αSα2

3Q2

1
y

∫ 1

xH

dx

x

∫ 1

zH

dz

z

×
∑

j

Q2
j

{
Fj(ξ, Q2)A

′′
Dj(ξ

′
, Q2) (14)

+Fj(ξ, Q2)B
′′
DG(ξ

′
, Q2) + FG(ξ, Q2)C

′′
Dj(ξ

′
, Q2)

}
,

Fig. 3. 〈cos φ〉 at HERMES energies in the a – k2
T /Q2 order,

b – kT /Q order

where

A=−
{

xz

(1 − x)(1 − z)

}1/2

[xz + (1 − x)(1 − z)]

B=
{

x(1 − z)
(1 − x)z

}1/2

[x(1 − z) + (1 − x)z]

C=−3
8

{
x(1 − x)
z(1 − z

}1/2

(1 − 2x)(1 − 2z)

A
′
=xz

B
′
=x(1 − z)

C
′
=

3
4
x(1 − x)

A
′′
=[1 + (1 − y)2]

x2 + z2

(1 − x)(1 − z)
+2y2(1 + xz) + 4(1 − y)(1 + 3xz)

B
′′
=[1 + (1 − y)2]

x2 + (1 − z)2

z(1 − x)
+ 2y2(1 + x − xz)

+4(1 − y)(1 + 3x(1 − z))

C
′′
=

3
8

{
[1 + (1 − y)2][x2 + (1 − x)2]

z2 + (1 − z)2

z(1 − z)

+16x(1 − y)(1 − x)
}

These expressions are identical with previous perturbative
results in [5] and the quantities A, B and C and those with
primes and two primes arise from diagrams Figs. 2b–2d
respectively.

Let us consider how 〈cos φ〉 as defined in (1) with
P2T cutoff PC , behaves numerically with including both
leading-order QCD (12, 14) and intrinsic transverse mo-
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Fig. 4. 〈cos 2φ〉 at HERMES energies in the a – k2
T /Q2 order,

b – kT /Q order

mentum (7, 9). We use the Glück et al. (GRV) parton
distribution functions [6] for Fj(ξ, Q2) in (3) and the scale-
dependent Binnewies et al. (BKK) parameterizations [8]
for the quark and gluon fragmentation functions to charged
pions. Our numerical results at HERMES energies: El =
27.5GeV , Q2 > 1GeV 2, 0.1 < y < 0.85, 0.02 < xH < 0.4
and 0.2 < zH < 1, presented in Fig. 3 (at these ranges
the difference in 〈cos φ〉 with distribution functions of [7]
(HMSR) is less then a few percents). In order to make an
average over the range of Q2, we also (as in [1]) use the
relation Q2 = 2MElxHy, where M is the proton mass.
The curves correspond to integrating over the same ranges
with keeping the k2

T /Q2 term in (5) (Fig. 3a) and with
neglecting the term of the order k2

T /Q2 so that P2T =
ξ

′
kT + ρ′ approximation (Fig. 3b). In both cases we take

a = b = 0.3GeV , which corresponds an average intrinsic
transverse momenta of 〈kT 〉 = 〈pT 〉 = 0.27GeV . Note,
that this choice is arbitrary. The numerical magnitude of
〈kT 〉 is at present rather uncertain and there are not mea-
surements of the unpolarized azimuthal asymmetries at
HERMES yet. In this respect our aim is only to show the
role of the k2

T /Q2 corrections and their quantitative con-
tributions in azimuthal asymmetries at HERMES kine-
matics (small Q2 and relatively large x) for some reason-
able numerical magnitude of 〈kT 〉. The reason of choice
of a small value of mean kT comes from the fact that in
the covariant parton model the kT depends on kinematical
variables: the small and moderate Q2 (and relatively large
x) requiring a small mean kT . In the same approach we
calculate also the angular moment 〈cos 2φ〉 as defined in
(2) using the (13, 14) and (7, 9). The numerical results are
illustrated in Fig. 4. One can see from Figs. 3, 4 that the
contribution of the term k2

T /Q2 to 〈cos φ〉 and to 〈cos 2φ〉
is significant. Thus, one can conclude that in kinematic

Fig. 5. 〈cos φ〉 at large transfer momentum with using the a
– parton distribution functions of [7] and fragmentation func-
tions of [11], b – recent scale-dependent parton distribution
[6] and fragmentation [8] functions. The kinematical cuts are
Q2 = 100GeV 2, 0.2 < y < 0.8, 0.05 < xH < 0.15 and
0.3 < zH < 1

regime of HERMES the error of P2T = ξ
′
kT +ρ′ approx-

imation (valid to order kT /Q) is rather big. The reason
of this is mainly conditioned by small Q2 and relatively
large xH . Note, that for relatively large values of the 〈kT 〉,
〈pT 〉, the magnitudes of the nonperturbative |〈cos φ〉| and
〈cos 2φ〉 increase and the k2

T /Q2 order corrections become
more essential. The contributions of perturbative effects
in this regime are not exceed a few percents.

Moreover, it is important to mention here that the
complete behavior of azimuthal distributions may be pre-
dicted only after inclusion of higher-twist mechanisms, as
suggested by Berger [9]. He considered the case of single
pion production taking into account pion bound-state ef-
fects, which generates azimuthal asymmetries with oppo-
site sign respect to perturbative QCD and intrinsic trans-
verse momenta effects. More recently Brandenburg et al.
[10] reconsidered Berger’s mechanism and discussed the
way of disentangle the effects from those considered above.

If we now focus to large Q2 values and larger trans-
verse momenta for the observed hadrons, the nonpertur-
bative contributions are much less important (the contri-
butions of σ(0) are negligible). In [1] the authors estimated
10% theoretical uncertainty, due to the indetermination
of the distribution and fragmentation functions. We re-
calculate the quantity 〈cos φ〉 by formulae of (10) for the
same ranges as in [1] using the new sets of scale-dependent
parton distribution [6] and fragmentation functions [8].
In Fig. 5 we also exhibit the result of [1], where parton
distribution [7] and scale-independent Segal’s fragmenta-
tion functions [11] have been used. From Fig. 5 one can
conclude that those new distribution and fragmentation
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Fig. 6. 〈cos 2φ〉 at large transfer momentum with using the re-
cent scale-dependent parton distribution [6] and fragmentation
[8] functions. The kinematical cuts are the same as in Fig. 5

functions bring up to 18% difference to quantity 〈cos φ〉.
This difference arises most probably due to the discrep-
ancy between GRV and HMSR distribution functions at
small x (x < 0.1).

Figure 6 displays the result for quantity 〈cos 2φ〉 cal-
culated by formulae of (11) in the same range using the
recent sets of Q2 depending distribution functions.

In summary, we have investigated the azimuthal asym-
metries in semi-inclusive deep inelastic leptoproduction
arising due to both perturbative and nonperturbative ef-
fects at HERMES energies. We have showed that due
to small Q2 and relatively large xH in that kinematical
regime, the k2

T /Q2 order corrections to 〈cos φ〉 and 〈cos 2φ〉

are significant. At small Q2 (at moderate Q2 as well) these
quantities are somewhat sensitive to the intrinsic trans-
verse momentum, and consequently, the measurement of
the azimuthal asymmetries may provide a good way to
obtain 〈kT 〉.

Moreover, we have reconsidered the results of pertur-
bative effects for 〈cos φ〉 [1] in the kinematic regime at
HERA using the more recent Q2 depending parton dis-
tribution and fragmentation functions, which bring up to
18% difference in 〈cos φ〉. In the same approach we have
calculated the 〈cos 2φ〉 as well.
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